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Outline
• In these set of slides we will derive the expected spectra for photo-

multiplier tubes.  The techniques can be applied to other detectors as 
well.  

• To derive these we will need some powerful mathematical tools.  We 
will also use some basic understanding of the device.  

• The assumption in these slides is that we have integrated the charge 
coming from a PMT. The only sources of noise is the PMT itself.  

• The electrical signal out of a PMT has been analyzed in a  separate, 
earlier two lectures. 

• Reference: also see E. Bellamy, et al., NIM A339, 468 (1994), and also 
the Hamamatsu, Photomultiplier tubes: Basics and Applications 
(2007) 3rd edition.  



Some definitions
X  is a continuous random variable with probability density function PX (x) then the 
characteristic function is 

ϕX (k) ≡ E[eikx ]= PX (x)eikx dx   
−∞

∞

∫
X  is a random variable,  x is a realization of X  over its domain. E[ ] is the expectation 
value of its argument.  What is the point of the characteristic function ? 
It is a way of tagging the probability number with a unique number (eikx ). It is as if 
we are storing the number in a file folder with a tag.  

 Notice ϕ(k = 0) = 1  since it is the integral of the PDF. 

the mean is given by x = −i ∂ϕ
∂k

(k = 0),  and so on for other moments

If X  and Y  are two random variables and z = f (x, y)   then the Characteristic function for Z is

ϕZ (k) = eikf (x,y)PX (x)∫∫ dx QY (y)dy

To get the moments of f (x, y) often it is not necessary to evaluate the integral. 
e.g. f (x, y) = x + y ⇒  ϕZ (k) =ϕX (k).ϕY (k)  .... leave it for you to prove this 



basics of photomultiplier
Mean of λ photo electrons come from the photo-cathode to the first 
dynode.  

Each electron generates 𝛼 electrons at the first dynode.  

Each subsequent stage produces gain of few electrons per 
incoming electrons leading to gains of ~106-7

photocathode  
mean λ photo-electrons

𝛼 electrons per 
incoming electron

If mean of λ photons convert in a photo-sensor with a mean gain of 𝛼 
electrons per photon what is the distribution of the output number of 
electrons ?

Basically, an average of λ packets arrive each with an average of 𝛼 items 
in each packet.  What is the mean and variance of the total number of 
items ? How do we calculate this… 



Distribution of incoming electrons with Poisson mean of λ
K  is the number of electrons, a discrete random variable with probability mass function

PK (k) = λ
k

k!
e−λ

Characteristic function for this is the expectation value of eisk

ϕK (s) ≡ E[eisk ]= eiskPK (k)
k=0

∞

∑ = eiskλ k

k!
e−λ

k=0

∞

∑ = ee
isλe−λ = eλ (eis−1)

This function has many interesting properties.  

Similarly, the distribution of photons from each electron has probability 

PL (ℓ)=α
ℓ

ℓ!
e−α   and a similar characteristic function ϕL (s).

We have labeled the two  functions to distinguish them from each other.
Additionally recall that the mean for a Poisson distribution with parameter λ  is 
E[k]= λ  and the variance is also E[k2 ]− (E[k])2 = λ



Simple calculation first
Before we do the full calculation we will perform an intuitative calculation. 
Obviously λ  and α  are Poisson parameters.   Total charge will be called Q.  

Q = λ iα
The fractional variance of Q will have contribution from the fluctuation of the incident number K and 

then the fluctuation in the secondary number Li
i=1

K

∑   which is a sum of K random numbers each Poisson

 distributed with parameter α

Var[Q]
Q 2 = Var[K ]

K 2 + 1
K

× Var[L]
L 2 = 1

λ
+ 1
λ
i

1
α

Var[Q]= λα (α +1)

Suppose L is actually Normally distributed with parameters α  (mean) and σ (standard deviation) 
Var[Q]
Q 2 = Var[K ]

K 2 + 1
K

× Var[L]
L 2 = 1

λ
+ 1
λ
i
σ 2

α 2

Var[Q]= λ(σ 2 +α 2 )



Now calculate the PDF for the charge

Total charge is  a discrete random number Z. 

Z = Li
i=1

K

∑   

This is a sum of K random numbers, each is the count from an electron gain. 
Now, it is obvious that the mean number of total electrons must be λ ×α ,  where
λ   is the Poisson mean for the number of electrons and α  is the Poisson mean for 
the gain or the number of electrons resulting from the multiplication of an electron.  
However, the random number for the total number of photons is not a product of 
the two random numbers K (the number of electrons) and L (the number of photons). 
The characteristic function for the number Z is 

ϕZ (s) ≡ E[eisz ]= eiszPZ (Z = z)
z=0

∞

∑
Here PZ  is unknown.  



Characteristic function of Z
Start with the generating function for total number Z 
(recall that K is the r.v. for electrons and L is the r.v. for gain on each electron) 

ϕZ (s) ≡ eiszPZ (Z = z)
z=0

∞

∑ = E[eisz ]= E[e
is Li

i=1

K

∑
K = k]

k=0

∞

∑ i PK (k)

= E[eisl1eisl2 ...eislK K = k] i PK (k)
k=0

∞

∑
This says that the total expectation for eisz  is the same as  
the average of the conditional expectation for k electrons (averaged over the 
probability of obtaining k electrons).  This is the law of total expectation.  
Each random variable Li  is independent, and so each has the same char. func. 

ϕZ (s) = (ϕL (s))k
k=0

∞

∑ i PK (k)

This leads to a compact expression.  

ϕZ (s) = (eα (eis−1) )k
k=0

∞

∑ i
e−λλ k

k!
= eλ (eα (eis−1)−1)



expressions for Poisson and Normal gain
For Poisson gain 

ϕL (s) = eα (eis−1)

For gain with normal PDF.   N(µ,σ 2 )

ϕL (s) = eisµ i e
− s

2σ 2

2

Generally for Poisson PDF with α >>1 we can use Normal PDF with µ=α  and σ 2 =α

For Poisson 

ϕZ (s) = (eα (eis−1) )k
k=0

∞

∑ i
e−λλ k

k!
= ekα (eis−1)

k=0

∞

∑ i
e−λλ k

k!
When we invert this to get the probability we get a formula with an infinite series

PZ (n) =
e−λ + e−λλ k

k!
i e−kα      for n = 0

k=1

∞

∑
e−λλ k

k!
i
e−kα (kα )n

n!
     for n > 0

k=1

∞

∑
    It is important to be careful about 0



Normal distributed gain
For Normal 

ϕZ (s) = (eisµ i e
− s

2σ 2

2 )k
k=0

∞

∑ i
e−λλ k

k!
= (eisµk i e

− s
2σ 2k

2 )
k=0

∞

∑ i
e−λλ k

k!
= e

λ eisµ−s
2σ 2 /2−1⎡

⎣⎢
⎤
⎦⎥  

When we invert this to get the probability we get a formula with an infinite series

PZ (z) =    e−λλ k

k!k=1

∞

∑ i
1

2πσ 2k
e
− (z−kµ )2

2σ 2k    for z > 0

There is some care needed here because z is now a continuous variable, and PZ (z)
is now a probability density function.  
(When the bin size of z is chosen to be δ z = 1,  we recover an approximation to the 
probability mass function for a Poisson jumping distribution. )
One still needs to obtain a well defined  probability at z = 0. For this we go back to 
setting µ=α  and  σ 2 =α

PZ (n) ≈
e−λ + e−λλ k

k!
i
e−kα /2

2πkα
     for n = 0

k=1

∞

∑
e−λλ k

k!
i

1
2πkα

e
− (n−kα )2

2kα      for n > 0
k=1

∞

∑



comparison of plots
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λ=2, α=6

Blue dots are for Poisson/Poisson, Red curve is Poisson/Normal approximation
λ= {1,2,6} is the Poisson parameter;  α= {1,2,6} is the Poisson parameter for the jump
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pedestal and background

The signal is going to be convoluted with background processes.  First we have to figure out
what the background looks like in the absense of signal.  
We take an integral (or sum) in a given time interval over which signal might arrive. If there is 
no signal then we end up adding a fluctuating baseline with some mean.  This will have a Gaussian PDF

PQ (x) = 1
2πσ 0

2
 e

− (x−q0 )2

2σ 0
2

   where q0  is the pedestal 

There is another background process due to emission of real electrons from either the photocathode or one of 
dynodes due to thermal fluctuations. This will have an exponential PDF, but with some chance that there is no
emission at all.  
PD (x) = (1−w)δ (x)+wθ(x)c0e

−c0x    
here w is the probability of emission, δ (x) is the dirac delta function to create a generalized distribution, and 
θ(x) is a step function, and c0  is some constant. 



background function
We first have to convolute PQ  and PD  to get the background only spectrum for 
B =Q + D ;  We can do this explicitly or just write down the characteristic function.  

ϕB(s) =ϕQ (s) iϕD (s) = eisq0e
−1

2
σ 0

2s2

× (1−w)+w 1
1− is / c0

⎛
⎝⎜

⎞
⎠⎟

as long as the width of the pedestal is small with respect to the exponential 1/c0

PB(x) = (1−w) 1
2πσ 0

2
e
− (x−q0 )2

2σ 0
2

+wθ(x − q0 )c0e
−c0 (x−q0 )

Basically there is a pedestal with some width and a falling exponential background.

What if the pedestal width is too wide ? Then the exponential part of the background will 
get consumed in the width of the pedestal.  
It is possible to obtain the full form.  
                             



Gaussian-modified-exponential 
A normally distributed random number with an addition of an exponential 
random number is called an exponential-Gaussian or Gaussian-exponential. 
The characteristic function is 

ϕEG (s) = eisq0e
−1

2
σ 0

2s2

(1− is / c0 )
The PDF that corresponds to this is 

PEG (x) = c0

2
e
c0

2σ 0
2

2 e−c0 (x−q0 )Erfc 1
2

c0σ 0 −
x − q0

σ 0

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

Recall that c0  is the constant for dark rate, σ 0  is the std. dev. of the pedestal and 
q0  is the pedestal.  
Erfc[x]  is the complement of the error fuction.  

Erfc[x]= 1− Erf [x]= 2
π

e− t
2

dt
x

∞

∫
When c0σ 0  is small the Erfc acts like a step function. 
Some care is needed in calculation in case of negative 
or very large arguments. 
The Mean of the PDF is (q0 +1/ c0 ) 
The Variance is (σ 0

2 +1/ c0
2 )
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Couple of definitions

Let's define some PDFs to get a compact expression 
The Normal PDF

N(x :µ,σ 2 ) = 1
2πσ 2

 e
− (x−µ )2

2σ 2

The Exponential modified Normal PDF

EN (x :µ,σ 2,λ) = λ
2
e
λ2σ 2

2 e−λ (x−µ )Erfc 1
2

λσ − x − µ
σ

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

µ :    mean of the Gaussian 
σ 2:     variance of the Gaussian
λ:     exponential decay parameter 



total response
To get the complete response we have to get the PDF for Y  =  B + Z  where 
B is the background and Z is the signal.  B = D +Q as we calculated for the background. 
and so 
ϕY (s) =ϕZ (s) iϕD (s) iϕQ (s)

ϕY (s) = (eisµk i e
− s

2σ 2k
2 )

k=0

∞

∑ i
e−λλ k

k!
⎛

⎝⎜
⎞

⎠⎟
× (1−w)+w 1

1− is / c0

⎛
⎝⎜

⎞
⎠⎟
× eisq0e

−1
2
σ 0

2s2

This is the full and complete expression for the PMT response assuming the gain is 
normally distributed.   We will break this up in 6 pieces and analyze it for special 
conditions.  

ϕY (s) = e−λλ k

k!
(eis(µk+q0 ) i e

− s
2 (σ 2k+σ 0

2 )
2 )

k=0

∞

∑
⎛

⎝⎜
⎞

⎠⎟
× (1−w)+w 1

1− is / c0

⎛
⎝⎜

⎞
⎠⎟

We break this up in three cases for p.e. count: k = 0,  k = 1,  and k >1
And additional two cases  for  (1-w),  without dark rate 
and (w),  with dark rate addition.  
 



all terms broken out for the characteristic 
function. Check that when s=0 the sum adds to 1  

Terms (1−w)× w ×

e−λ × eisq0e
− s

2σ 0
2

2 eisq0e
− s

2σ 0
2

2 × 1
1− is / c0

λe−λ × eis(µ+q0 )e
− s

2 (σ 2+σ 0
2 )

2 eis(µ+q0 )e
− s

2 (σ 2+σ 0
2 )

2 × 1
1− is / c0

e−λλ k

k!
×

k=2

∞

∑ eis(µk+q0 )e
− s

2 (σ 2k+σ 0
2 )

2 eis(µk+q0 )e
− s

2 (σ 2k+σ 0
2 )

2 1
1− is / c0

all these are to be added together. When transformed to PDF, each 
term will convert to a normal PDF or an exponential-normal PDF. 

no signal

single pe

many pe

no dark 
current

with dark 
current



Approximation when pedestal is narrow, also set 
pedestal q0 = 0

Terms (1−w)× w ×

e−λ × e
− s

2σ 0
2

2 1
1− is / c0

λe−λ × eis(µ )e
− s

2 (σ 2 )
2 eis(µ )e

− s
2 (σ 2 )
2 × 1

1− is / c0
e−λλ k

k!
×

k=2

∞

∑ eis(µk )e
− s

2 (σ 2k )
2 eis(µk )e

− s
2 (σ 2k )
2 1
1− is / c0

no signal

single pe

many pe

no dark 
current

with dark 
current

σ 0 <<σ  and σ 0 <<1/ c0

 also set q0 = 0



when w=0 or c0 is very small

Terms (1−w)× w ×

e−λ × e
− s

2σ 0
2

2 1
1− is / c0

λe−λ × eis(µ )e
− s

2 (σ 2 )
2 eis(µ )e

− s
2 (σ 2 )
2 × 1

1− is / c0
e−λλ k

k!
×

k=2

∞

∑ eis(µk )e
− s

2 (σ 2k )
2 eis(µk )e

− s
2 (σ 2k )
2 1
1− is / c0

no signal

single pe

many pe

no dark 
current

with dark 
current

σ 0 <<σ  and σ 0 <<1/ c0

 also set q0 = 0



all terms broken out for the PDF in compact notation 

Terms (1−w)× w ×
e−λ × N(x :q0,σ 0

2 ) EN (x :q0,σ 0
2,c0 )

λe−λ × N(x :µ + q0,σ
2 +σ 0

2 ) EN (x :µ + q0,σ
2 +σ 0

2,c0 )

e−λλ k

k!
×

k=2

∞

∑ N(x :µk + q0,σ
2k +σ 0

2 ) EN (x :µk + q0,σ
2k +σ 0

2,c0 )

all these are to be added together to get the full PDF. 
The sum is applied across the row. 

no signal

single pe

many pe

no dark 
current

with dark 
current



plot some examples

plot λ w q0 σ 0 µ σ c0
1 3 0.3 1 0.2 5 2 10
2 3 0.3 1 0.5 5 2 10
3 3 0 1 0.2 5 2 10
4 6 0 1 0.2 5 2 10

with dark current, narrow/wide pedestal

no dark current, less/more p.e. 
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some data

• I have provided some data from a HPK R5912-mod 10 stage PMT.  It has 
very low dark rate. An LED was flashed thru a fiber at the PMT.  

• Data was taken with a scope and so the pedestal noise is very low also.
• There has been no selection of data. 5000 pulses were integrated in a 

fixed time interval and the LED pulse charge plotted with no cuts.    
• This PMT is B10-1   at 1430V (left), and 1460V (right)  
• The red curve is not a fit, I just guessed at the parameters.  
• Homework:  fit the 6 spectra I have provided. 
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conclusion. 
• We derived the full expression for the charge spectrum 

from a typical photo-multiplier.  

• The expression has parameters for the pedestal, width 
of the pedestal, the dark current, and the signal.  

• The method for deriving the expression is very general, 
and can be applied to any detector system with 
appropriate changes.  

• The expression can be used for a full fit to an 
experimental spectrum. It is important to know the 
stable conditions under which data was obtained.  


